
Package: polyCub (via r-universe)
September 12, 2024

Title Cubature over Polygonal Domains

Version 0.9.1

Date 2024-05-21

Description Numerical integration of continuously differentiable
functions f(x,y) over simple closed polygonal domains. The
following cubature methods are implemented: product Gauss
cubature (Sommariva and Vianello, 2007,
<doi:10.1007/s10543-007-0131-2>), the simple two-dimensional
midpoint rule (wrapping 'spatstat.geom' functions), and
adaptive cubature for radially symmetric functions via line
integrate() along the polygon boundary (Meyer and Held, 2014,
<doi:10.1214/14-AOAS743>, Supplement B). For simple integration
along the axes, the 'cubature' package is more appropriate.

License GPL-2

URL https://github.com/bastistician/polyCub

BugReports https://github.com/bastistician/polyCub/issues

Depends R (>= 3.2.0), methods

Imports grDevices, graphics, stats, sp (>= 1.0-11)

Suggests spatstat.geom, lattice, mvtnorm, statmod, sf, cubature,
knitr, markdown, microbenchmark

VignetteBuilder knitr

Roxygen list(old_usage = TRUE)

RoxygenNote 7.3.2

Repository https://bastistician.r-universe.dev

RemoteUrl https://github.com/bastistician/polycub

RemoteRef HEAD

RemoteSha 694cd74fc9c68ea75e68602c63cf579faf826ee3

1

https://doi.org/10.1007/s10543-007-0131-2
https://doi.org/10.1214/14-AOAS743
https://github.com/bastistician/polyCub
https://github.com/bastistician/polyCub/issues

2 polyCub-package

Contents
polyCub-package . 2
checkintrfr . 3
circleCub.Gauss . 4
coerce-gpc-methods . 5
coerce-sp-methods . 6
plotpolyf . 7
plot_polyregion . 8
polyCub . 9
polyCub.exact.Gauss . 10
polyCub.iso . 11
polyCub.midpoint . 14
polyCub.SV . 15
sfg2gpc . 18
xylist . 19

Index 22

polyCub-package Cubature over Polygonal Domains

Description

The R package polyCub implements cubature (numerical integration) over polygonal domains. It
solves the problem of integrating a continuously differentiable function f(x, y) over simple closed
polygons.

Details

polyCub provides the following cubature methods:

polyCub.SV: General-purpose product Gauss cubature (Sommariva and Vianello, 2007)

polyCub.midpoint: Simple two-dimensional midpoint rule based on as.im.function from spat-
stat.geom (Baddeley et al., 2015)

polyCub.iso: Adaptive cubature for radially symmetric functions via line integrate() along the
polygon boundary (Meyer and Held, 2014, Supplement B, Section 2.4).

A brief description and benchmark experiment of the above cubature methods can be found in the
vignette("polyCub").

There is also polyCub.exact.Gauss, intended to accurately (but slowly) integrate the bivariate
Gaussian density; however, this implementation is disabled as of polyCub 0.9.0: it needs a reliable
implementation of polygon triangulation.

Meyer (2010, Section 3.2) discusses and compares some of these methods.

Author(s)

Sebastian Meyer

checkintrfr 3

References

Baddeley, A., Rubak, E. and Turner, R. (2015). Spatial Point Patterns: Methodology and Applica-
tions with R. Chapman and Hall/CRC Press, London.

Meyer, S. (2010). Spatio-Temporal Infectious Disease Epidemiology based on Point Processes.
Master’s Thesis, LMU Munich. Available as https://epub.ub.uni-muenchen.de/11703/.

Meyer, S. and Held, L. (2014). Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

Sommariva, A. and Vianello, M. (2007). Product Gauss cubature over polygons based on Green’s
integration formula. BIT Numerical Mathematics, 47 (2), 441-453. doi:10.1007/s1054300701312

See Also

vignette("polyCub")

For the special case of a rectangular domain along the axes (e.g., a bounding box), the cubature
package is more appropriate.

checkintrfr Check the Integral of rf_r(r)

Description

This function is auxiliary to polyCub.iso. The (analytical) integral of rfr(r) from 0 to R is
checked against a numeric approximation using integrate for various values of the upper bound
R. A warning is issued if inconsistencies are found.

Usage

checkintrfr(intrfr, f, ..., center, control = list(), rs = numeric(0L),
tolerance = control$rel.tol)

Arguments

intrfr a function(R, ...), which implements the (analytical) antiderivative of rfr(r)
from 0 to R. The first argument must be vectorized but not necessarily named R.
If intrfr is missing, it will be approximated numerically via integrate(function(r,
...) r * f(cbind(x0 + r, y0), ...), 0, R, ..., control=control), where
c(x0, y0) is the center of isotropy. Note that f will not be checked for isotropy.

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f or intrfr.

center numeric vector of length 2, the center of isotropy.

control list of arguments passed to integrate, the quadrature rule used for the line
integral along the polygon boundary.

https://epub.ub.uni-muenchen.de/11703/
https://doi.org/10.1214/14-AOAS743
https://doi.org/10.1007/s10543-007-0131-2
https://CRAN.R-project.org/package=cubature

4 circleCub.Gauss

rs numeric vector of upper bounds for which to check the validity of intrfr. If it
has length 0 (default), no checks are performed.

tolerance of all.equal.numeric when comparing intrfr results with numerical inte-
gration. Defaults to the relative tolerance used for integrate.

Value

The intrfr function. If it was not supplied, its quadrature version using integrate is returned.

circleCub.Gauss Integration of the Isotropic Gaussian Density over Circular Domains

Description

This function calculates the integral of the bivariate, isotropic Gaussian density (i.e., Σ = sd^2*diag(2))
over a circular domain via the cumulative distribution function pchisq of the (non-central) Chi-
Squared distribution (Abramowitz and Stegun, 1972, Formula 26.3.24).

Usage

circleCub.Gauss(center, r, mean, sd)

Arguments

center numeric vector of length 2 (center of the circle).

r numeric (radius of the circle). Several radii may be supplied.

mean numeric vector of length 2 (mean of the bivariate Gaussian density).

sd numeric (common standard deviation of the isotropic Gaussian density in both
dimensions).

Value

The integral value (one for each supplied radius).

Note

The non-centrality parameter of the evaluated chi-squared distribution equals the squared distance
between the mean and the center. If this becomes too large, the result becomes inaccurate, see
pchisq.

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications.

coerce-gpc-methods 5

Examples

circleCub.Gauss(center=c(1,2), r=3, mean=c(4,5), sd=6)

compare with cubature over a polygonal approximation of a circle
Not run: ## (this example requires gpclib)
disc.poly <- spatstat.geom::disc(radius=3, centre=c(1,2), npoly=32)
polyCub.exact.Gauss(disc.poly, mean=c(4,5), Sigma=6^2*diag(2))

End(Not run)

coerce-gpc-methods Conversion between polygonal "owin" and "gpc.poly"

Description

Package polyCub implements converters between the classes "owin" of package spatstat.geom
and "gpc.poly" of package gpclib.

Usage

owin2gpc(object)

gpc2owin(object, ...)

as.owin.gpc.poly(W, ...)

Arguments

object an object of class "gpc.poly" or "owin", respectively.

... further arguments passed to owin.

W an object of class "gpc.poly".

Value

The converted polygon of class "gpc.poly" or "owin", respectively. If package gpclib is not
available, owin2gpc will just return the pts slot of the "gpc.poly" (no formal class) with a warning.

Note

The converter owin2gpc requires the package gpclib for the formal class definition of a "gpc.poly".
It will produce vertices ordered according to the sp convention, i.e. clockwise for normal boundaries
and anticlockwise for holes, where, however, the first vertex is not repeated!

Author(s)

Sebastian Meyer

https://CRAN.R-project.org/package=spatstat.geom
https://CRAN.R-project.org/package=gpclib

6 coerce-sp-methods

See Also

xylist

Examples

use example polygons from
example(plotpolyf, ask = FALSE)
letterR # a simple "xylist"

letterR.owin <- spatstat.geom::owin(poly = letterR)
letterR.gpc_from_owin <- owin2gpc(letterR.owin)
warns if "gpclib" is unavailable

if (is(letterR.gpc_from_owin, "gpc.poly")) {
letterR.xylist_from_gpc <- xylist(letterR.gpc_from_owin)
stopifnot(all.equal(letterR, lapply(letterR.xylist_from_gpc, `[`, 1:2)))
letterR.owin_from_gpc <- gpc2owin(letterR.gpc_from_owin)
stopifnot(all.equal(letterR.owin, letterR.owin_from_gpc))

}

coerce-sp-methods Coerce "SpatialPolygons" to "owin"

Description

Package polyCub implements coerce-methods (as(object, Class)) to convert "SpatialPolygons"
(or "Polygons" or "Polygon") of package sp to "owin" of package spatstat.geom. They are also
available as as.owin.* functions to support polyCub.midpoint.

Usage

as.owin.SpatialPolygons(W, ...)

as.owin.Polygons(W, ...)

as.owin.Polygon(W, ...)

Arguments

W an object of class "SpatialPolygons", "Polygons", or "Polygon".

... further arguments passed to owin.

Author(s)

Sebastian Meyer

https://CRAN.R-project.org/package=sp
https://CRAN.R-project.org/package=spatstat.geom

plotpolyf 7

See Also

xylist

Examples

if (require("spatstat.geom") && require("sp")) {
diamond <- list(x = c(1,2,1,0), y = c(1,2,3,2)) # anti-clockwise
diamond.owin <- owin(poly = diamond)
diamond.sp <- Polygon(lapply(diamond, rev)) # clockwise
stopifnot(identical(xylist(diamond.sp), list(diamond)))
diamond.owin_from_sp <- as.owin(diamond.sp)
stopifnot(all.equal(diamond.owin, diamond.owin_from_sp))

similarly works for Polygons and SpatialPolygons
diamond.Ps <- as(diamond.sp, "Polygons")
stopifnot(identical(diamond.owin, as.owin(diamond.Ps)))
diamond.SpPs <- SpatialPolygons(list(diamond.Ps))
stopifnot(identical(xylist(diamond.SpPs), list(diamond)))
stopifnot(identical(diamond.owin, as.owin(diamond.SpPs)))

}

plotpolyf Plot Polygonal Domain on Image of Bivariate Function

Description

Produces a combined plot of a polygonal domain and an image of a bivariate function, using either
lattice::levelplot or image.

Usage

plotpolyf(polyregion, f, ..., npixel = 100, cuts = 15,
col = rev(heat.colors(cuts + 1)), lwd = 3, xlim = NULL, ylim = NULL,
use.lattice = TRUE, print.args = list())

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat.geom, "gpc.poly" from gpclib, "SpatialPolygons", "Polygons",
and "Polygon" from package sp, as well as "(MULTI)POLYGON" from package
sf. (For these classes, polyCub knows how to get an xylist.)

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.

npixel numeric vector of length 1 or 2 setting the number of pixels in each dimension.

8 plot_polyregion

cuts number of cut points in the z dimension. The range of function values will be
divided into cuts+1 levels.

col color vector used for the function levels.

lwd line width of the polygon edges.

xlim, ylim numeric vectors of length 2 setting the axis limits. NULL means using the bound-
ing box of polyregion.

use.lattice logical indicating if lattice graphics (levelplot) should be used.

print.args a list of arguments passed to print.trellis for plotting the produced "trellis"
object (given use.lattice = TRUE). The latter will be returned without explicit
printing if print.args is not a list.

Author(s)

Sebastian Meyer

Examples

a polygonal domain (a simplified version of spatstat.data::letterR$bdry)
letterR <- list(

list(x = c(2.7, 3, 3.3, 3.9, 3.7, 3.4, 3.8, 3.7, 3.4, 2, 2, 2.7),
y = c(1.7, 1.6, 0.7, 0.7, 1.3, 1.8, 2.2, 2.9, 3.3, 3.3, 0.7, 0.7)),

list(x = c(2.6, 2.6, 3, 3.2, 3),
y = c(2.2, 2.7, 2.7, 2.5, 2.2))

)

f: isotropic exponential decay
fr <- function(r, rate = 1) dexp(r, rate = rate)
fcenter <- c(2,3)
f <- function (s, rate = 1) fr(sqrt(rowSums(t(t(s)-fcenter)^2)), rate = rate)

plot
plotpolyf(letterR, f, use.lattice = FALSE)
plotpolyf(letterR, f, use.lattice = TRUE)

plot_polyregion Plots a Polygonal Domain (of Various Classes)

Description

Plots a Polygonal Domain (of Various Classes)

Usage

plot_polyregion(polyregion, lwd = 2, add = FALSE)

polyCub 9

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat.geom, "gpc.poly" from gpclib, "SpatialPolygons", "Polygons",
and "Polygon" from package sp, as well as "(MULTI)POLYGON" from package
sf. (For these classes, polyCub knows how to get an xylist.)

lwd line width of the polygon edges.

add logical. Add to existing plot?

polyCub Wrapper Function for the Various Cubature Methods

Description

The wrapper function polyCub can be used to call specific cubature methods via its method ar-
gument. It calls the polyCub.SV function by default, which implements general-purpose product
Gauss cubature. The desired cubature function should usually be called directly.

Usage

polyCub(polyregion, f, method = c("SV", "midpoint", "iso", "exact.Gauss"),
..., plot = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat.geom, "gpc.poly" from gpclib, "SpatialPolygons", "Polygons",
and "Polygon" from package sp, as well as "(MULTI)POLYGON" from package
sf. (For these classes, polyCub knows how to get an xylist.)

f a two-dimensional real-valued function to be integrated over polyregion. As
its first argument it must take a coordinate matrix, i.e., a numeric matrix with
two columns, and it must return a numeric vector of length the number of coor-
dinates.
For the "exact.Gauss" method, f is ignored since it is specific to the bivariate
normal density.

method choose one of the implemented cubature methods (partial argument matching
is applied), see help("polyCub-package") for an overview. Defaults to using
product Gauss cubature implemented in polyCub.SV.

... arguments of f or of the specific method.

plot logical indicating if an illustrative plot of the numerical integration should be
produced.

Value

The approximated integral of f over polyregion.

10 polyCub.exact.Gauss

See Also

Details and examples in the vignette("polyCub") and on the method-specific help pages.

Other polyCub-methods: polyCub.SV(), polyCub.exact.Gauss(), polyCub.iso(), polyCub.midpoint()

polyCub.exact.Gauss Quasi-Exact Cubature of the Bivariate Normal Density (DEFUNCT)

Description

This cubature method is defunct as of polyCub version 0.9.0. It relied on tristrip() from pack-
age gpclib for polygon triangulation, but that package did not have a FOSS license and was no
longer maintained on a mainstream repository.
Contributions to resurrect this cubature method are welcome: an alternative implementation for
constrained polygon triangulation is needed, see https://github.com/bastistician/polyCub/
issues/2.

Usage

polyCub.exact.Gauss(polyregion, mean = c(0, 0), Sigma = diag(2),
plot = FALSE)

Arguments

polyregion a "gpc.poly" polygon or something that can be coerced to this class, e.g., an
"owin" polygon (via owin2gpc), or an "sfg" polygon (via sfg2gpc).

mean, Sigma mean and covariance matrix of the bivariate normal density to be integrated.

plot logical indicating if an illustrative plot of the numerical integration should be
produced. Note that the polyregion will be transformed (shifted and scaled).

Details

The bivariate Gaussian density can be integrated based on a triangulation of the (transformed)
polygonal domain, using formulae from the Abramowitz and Stegun (1972) handbook (Section
26.9, Example 9, pp. 956f.). This method is quite cumbersome because the A&S formula is only
for triangles where one vertex is the origin (0,0). For each triangle we have to check in which
of the 6 outer regions of the triangle the origin (0,0) lies and adapt the signs in the formula ap-
propriately: (AOB + BOC − AOC) or (AOB − AOC − BOC) or (AOB + AOC − BOC)
or (AOC + BOC − AOB) or However, the most time consuming step is the evaluation of
pmvnorm.

Value

The integral of the bivariate normal density over polyregion. Two attributes are appended to the
integral value:

https://CRAN.R-project.org/package=gpclib
https://github.com/bastistician/polyCub/issues/2
https://github.com/bastistician/polyCub/issues/2

polyCub.iso 11

nEval number of triangles over which the standard bivariate normal density had to be
integrated, i.e. number of calls to pmvnorm and pnorm, the former of which being
the most time-consuming operation.

error Approximate absolute integration error stemming from the error introduced by
the nEval pmvnorm evaluations. For this reason, the cubature method is in fact
only quasi-exact (as is the pmvnorm function).

References

Abramowitz, M. and Stegun, I. A. (1972). Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables. New York: Dover Publications.

See Also

circleCub.Gauss for quasi-exact cubature of the isotropic Gaussian density over a circular do-
main.

Other polyCub-methods: polyCub(), polyCub.SV(), polyCub.iso(), polyCub.midpoint()

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

quasi-exact integration based on gpclib::tristrip() and mvtnorm::pmvnorm()
Not run: ## (this example requires gpclib)
hexagon.gpc <- new("gpc.poly", pts = lapply(hexagon, c, list(hole = FALSE)))
plotpolyf(hexagon.gpc, f, xlim = c(-8,8), ylim = c(-8,8))
print(polyCub.exact.Gauss(hexagon.gpc, mean = c(0,0), Sigma = 5^2*diag(2),

plot = TRUE), digits = 16)

End(Not run)

polyCub.iso Cubature of Isotropic Functions over Polygonal Domains

Description

polyCub.iso numerically integrates a radially symmetric function f(x, y) = fr(||(x, y) − µ||),
with µ being the center of isotropy, over a polygonal domain. It internally approximates a line
integral along the polygon boundary using integrate. The integrand requires the antiderivative of
rfr(r)), which should be supplied as argument intrfr (f itself is only required if check.intrfr=TRUE).

12 polyCub.iso

The two-dimensional integration problem thereby reduces to an efficient adaptive quadrature in one
dimension. If intrfr is not available analytically, polyCub.iso can use a numerical approximation
(meaning integrate within integrate), but the general-purpose cubature method polyCub.SV
might be more efficient in this case. See Meyer and Held (2014, Supplement B, Section 2.4) for
mathematical details.

.polyCub.iso is a “bare-bone” version of polyCub.iso.

Usage

polyCub.iso(polyregion, f, intrfr, ..., center, control = list(),
check.intrfr = FALSE, plot = FALSE)

.polyCub.iso(polys, intrfr, ..., center, control = list(),
.witherror = FALSE)

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat.geom, "gpc.poly" from gpclib, "SpatialPolygons", "Polygons",
and "Polygon" from package sp, as well as "(MULTI)POLYGON" from package
sf. (For these classes, polyCub knows how to get an xylist.)

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

intrfr a function(R, ...), which implements the (analytical) antiderivative of rfr(r)
from 0 to R. The first argument must be vectorized but not necessarily named R.
If intrfr is missing, it will be approximated numerically via integrate(function(r,
...) r * f(cbind(x0 + r, y0), ...), 0, R, ..., control=control), where
c(x0, y0) is the center of isotropy. Note that f will not be checked for isotropy.

... further arguments for f or intrfr.

center numeric vector of length 2, the center of isotropy.

control list of arguments passed to integrate, the quadrature rule used for the line
integral along the polygon boundary.

check.intrfr logical (or numeric vector) indicating if (for which r’s) the supplied intrfr
function should be checked against a numeric approximation. This check re-
quires f to be specified. If TRUE, the set of test r’s defaults to a seq of length 20
from 1 to the maximum absolute x or y coordinate of any edge of the polyregion.

plot logical indicating if an image of the function should be plotted together with the
polygonal domain, i.e., plotpolyf(polyregion, f, ...).

polys something like owin$bdry, but see xylist.

.witherror logical indicating if an upper bound for the absolute integration error should be
attached as an attribute to the result?

polyCub.iso 13

Value

The approximate integral of the isotropic function f over polyregion.
If the intrfr function is provided (which is assumed to be exact), an upper bound for the absolute
integration error is appended to the result as attribute "abs.error". It equals the sum of the absolute
errors reported by all integrate calls (there is one for each edge of polyregion).

Author(s)

Sebastian Meyer

The basic mathematical formulation of this efficient integration for radially symmetric functions
was ascertained with great support by Emil Hedevang (2013), Dept. of Mathematics, Aarhus Uni-
versity, Denmark.

References

Hedevang, E. (2013). Personal communication at the Summer School on Topics in Space-Time
Modeling and Inference (May 2013, Aalborg, Denmark).

Meyer, S. and Held, L. (2014). Power-law models for infectious disease spread. The Annals of
Applied Statistics, 8 (3), 1612-1639. doi:10.1214/14AOAS743

See Also

system.file("include", "polyCubAPI.h", package = "polyCub") for a full C-implementation
of this cubature method (for a single polygon). The corresponding C-routine polyCub_iso can be
used by other R packages, notably surveillance, via ‘LinkingTo: polyCub’ (in the ‘DESCRIPTION’)
and ‘#include <polyCubAPI.h>’ (in suitable ‘/src’ files). Note that the intrfr function must
then also be supplied as a C-routine. An example can be found in the package tests.

Other polyCub-methods: polyCub(), polyCub.SV(), polyCub.exact.Gauss(), polyCub.midpoint()

Examples

we use the example polygon and f (exponential decay) from
example(plotpolyf)

numerical approximation of 'intrfr' (not recommended)
(intISOnum <- polyCub.iso(letterR, f, center = fcenter))

analytical 'intrfr'
intrfr(R) = int_0^R r*f(r) dr, for f(r) = dexp(r), gives
intrfr <- function (R, rate = 1) pgamma(R, 2, rate) / rate
(intISOana <- polyCub.iso(letterR, f, intrfr = intrfr, center = fcenter,

check.intrfr = TRUE))
f is only used to check 'intrfr' against a numerical approximation

stopifnot(all.equal(intISOana, intISOnum, check.attributes = FALSE))

polygon area: f(r) = 1, f(x,y) = 1, center does not really matter

https://doi.org/10.1214/14-AOAS743
https://CRAN.R-project.org/package=surveillance

14 polyCub.midpoint

intrfr(R) = int_0^R r*f(r) dr = int_0^R r dr = R^2/2
intrfr.const <- function (R) R^2/2
(area.ISO <- polyCub.iso(letterR, intrfr = intrfr.const, center = c(0,0)))

if (require("spatstat.geom")) { # check against area.owin()
stopifnot(all.equal(area.owin(owin(poly = letterR)),

area.ISO, check.attributes = FALSE))
}

polyCub.midpoint Two-Dimensional Midpoint Rule

Description

The surface is converted to a binary pixel image using the as.im.function method from package
spatstat.geom (Baddeley et al., 2015). The integral under the surface is then approximated as the
sum over (pixel area * f(pixel midpoint)).

Usage

polyCub.midpoint(polyregion, f, ..., eps = NULL, dimyx = NULL,
plot = FALSE)

Arguments

polyregion a polygonal integration domain. It can be any object coercible to the spat-
stat.geom class "owin" via a corresponding as.owin-method. Note that this
includes polygons of the classes "gpc.poly" and "SpatialPolygons", because
polyCub defines methods as.owin.gpc.poly and as.owin.SpatialPolygons,
respectively. sf also registers suitable as.owin methods for its "(MULTI)POLYGON"
classes.

f a two-dimensional real-valued function. As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.
eps width and height of the pixels (squares), see as.mask.
dimyx number of subdivisions in each dimension, see as.mask.
plot logical indicating if an illustrative plot of the numerical integration should be

produced.

Value

The approximated value of the integral of f over polyregion.

References

Baddeley A, Rubak E, Turner R (2015). Spatial Point Patterns: Methodology and Applications with
R. Chapman and Hall/CRC Press, London.

https://CRAN.R-project.org/package=spatstat.geom

polyCub.SV 15

See Also

Other polyCub-methods: polyCub(), polyCub.SV(), polyCub.exact.Gauss(), polyCub.iso()

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

if (require("spatstat.geom")) {
hexagon.owin <- owin(poly = hexagon)

show_midpoint <- function (eps)
{

plotpolyf(hexagon.owin, f, xlim = c(-8,8), ylim = c(-8,8),
use.lattice = FALSE)

add evaluation points to plot
with(as.mask(hexagon.owin, eps = eps),

points(expand.grid(xcol, yrow), col = t(m), pch = 20))
title(main = paste("2D midpoint rule with eps =", eps))

}

show nodes (eps = 0.5)
show_midpoint(0.5)

show pixel image (eps = 0.5)
polyCub.midpoint(hexagon.owin, f, eps = 0.5, plot = TRUE)

use a decreasing pixel size (increasing number of nodes)
for (eps in c(5, 3, 1, 0.5, 0.3, 0.1))

cat(sprintf("eps = %.1f: %.7f\n", eps,
polyCub.midpoint(hexagon.owin, f, eps = eps)))

}

polyCub.SV Product Gauss Cubature over Polygonal Domains

Description

Product Gauss cubature over polygons as proposed by Sommariva and Vianello (2007).

Usage

polyCub.SV(polyregion, f, ..., nGQ = 20, alpha = NULL, rotation = FALSE,
engine = "C", plot = FALSE)

16 polyCub.SV

Arguments

polyregion a polygonal domain. The following classes are supported: "owin" from package
spatstat.geom, "gpc.poly" from gpclib, "SpatialPolygons", "Polygons",
and "Polygon" from package sp, as well as "(MULTI)POLYGON" from package
sf. (For these classes, polyCub knows how to get an xylist.)

f a two-dimensional real-valued function to be integrated over polyregion (or
NULL to only compute nodes and weights). As its first argument it must take a
coordinate matrix, i.e., a numeric matrix with two columns, and it must return a
numeric vector of length the number of coordinates.

... further arguments for f.

nGQ degree of the one-dimensional Gauss-Legendre quadrature rule (default: 20) as
implemented in function gauss.quad of package statmod. Nodes and weights
up to nGQ=60 are cached in polyCub, for larger degrees statmod is required.

alpha base-line of the (rotated) polygon at x = α (see Sommariva and Vianello (2007)
for an explication). If NULL (default), the midpoint of the x-range of each poly-
gon is chosen if no rotation is performed, and otherwise the x-coordinate of
the rotated point "P" (see rotation). If f has its maximum value at the ori-
gin (0, 0), e.g., the bivariate Gaussian density with zero mean, alpha = 0 is a
reasonable choice.

rotation logical (default: FALSE) or a list of points "P" and "Q" describing the preferred
direction. If TRUE, the polygon is rotated according to the vertices "P" and
"Q", which are farthest apart (see Sommariva and Vianello, 2007). For convex
polygons, this rotation guarantees that all nodes fall inside the polygon.

engine character string specifying the implementation to use. Up to polyCub version
0.4-3, the two-dimensional nodes and weights were computed by R functions
and these are still available by setting engine = "R". The new C-implementation
is now the default (engine = "C") and requires approximately 30% less compu-
tation time.
The special setting engine = "C+reduce" will discard redundant nodes at (0,0)
with zero weight resulting from edges on the base-line x = α or orthogonal to it.
This extra cleaning is only worth its cost for computationally intensive functions
f over polygons which really have some edges on the baseline or parallel to the
x-axis. Note that the old R implementation does not have such unset zero nodes
and weights.

plot logical indicating if an illustrative plot of the numerical integration should be
produced.

Value

The approximated value of the integral of f over polyregion.
In the case f = NULL, only the computed nodes and weights are returned in a list of length the number
of polygons of polyregion, where each component is a list with nodes (a numeric matrix with two
columns), weights (a numeric vector of length nrow(nodes)), the rotation angle, and alpha.

https://CRAN.R-project.org/package=statmod

polyCub.SV 17

Author(s)

Sebastian Meyer
These R and C implementations of product Gauss cubature are based on the original MATLAB
implementation polygauss by Sommariva and Vianello (2007), which is available under the GNU
GPL (>=2) license from https://www.math.unipd.it/~alvise/software.html.

References

Sommariva, A. and Vianello, M. (2007): Product Gauss cubature over polygons based on Green’s
integration formula. BIT Numerical Mathematics, 47 (2), 441-453. doi:10.1007/s1054300701312

See Also

Other polyCub-methods: polyCub(), polyCub.exact.Gauss(), polyCub.iso(), polyCub.midpoint()

Examples

a function to integrate (here: isotropic zero-mean Gaussian density)
f <- function (s, sigma = 5)

exp(-rowSums(s^2)/2/sigma^2) / (2*pi*sigma^2)

a simple polygon as integration domain
hexagon <- list(

list(x = c(7.33, 7.33, 3, -1.33, -1.33, 3),
y = c(-0.5, 4.5, 7, 4.5, -0.5, -3))

)

image of the function and integration domain
plotpolyf(hexagon, f)

use a degree of nGQ = 3 and show the corresponding nodes
polyCub.SV(hexagon, f, nGQ = 3, plot = TRUE)

extract nodes and weights
nw <- polyCub.SV(hexagon, f = NULL, nGQ = 3)[[1]]
nrow(nw$nodes)

manually apply the cubature rule
sum(nw$weights * f(nw$nodes))

use an increasing number of nodes
for (nGQ in c(1:5, 10, 20, 60))

cat(sprintf("nGQ = %2i: %.16f\n", nGQ,
polyCub.SV(hexagon, f, nGQ = nGQ)))

polyCub.SV() is the default method used by the polyCub() wrapper
polyCub(hexagon, f, nGQ = 3) # calls polyCub.SV()

now using a simple *rectangular* integration domain

https://www.math.unipd.it/~alvise/software.html
https://doi.org/10.1007/s10543-007-0131-2

18 sfg2gpc

rectangle <- list(list(x = c(-1, 7, 7, -1), y = c(-3, -3, 7, 7)))
polyCub.SV(rectangle, f, plot = TRUE)

effect of rotation given a very low nGQ
opar <- par(mfrow = c(1,3))
polyCub.SV(rectangle, f, nGQ = 4, rotation = FALSE, plot = TRUE)

title(main = "without rotation (default)")
polyCub.SV(rectangle, f, nGQ = 4, rotation = TRUE, plot = TRUE)

title(main = "standard rotation")
polyCub.SV(rectangle, f, nGQ = 4,

rotation = list(P = c(0,0), Q = c(2,-3)), plot = TRUE)
title(main = "custom rotation")

par(opar)

comparison with the "cubature" package
if (requireNamespace("cubature")) {

fc <- function (s, sigma = 5) # non-vectorized version of f
exp(-sum(s^2)/2/sigma^2) / (2*pi*sigma^2)

cubature::hcubature(fc, lowerLimit = c(-1, -3), upperLimit = c(7, 7))
}

sfg2gpc Convert polygonal "sfg" to "gpc.poly"

Description

Package polyCub implements a converter from class "(MULTI)POLYGON" of package sf to "gpc.poly"
of package gpclib such that polyCub.exact.Gauss can be used with simple feature polygons.

Usage

sfg2gpc(object)

Arguments

object a "POLYGON" or "MULTIPOLYGON" "sfg" object.

Value

The converted polygon of class "gpc.poly". If package gpclib is not available, sfg2gpc will just
return the pts slot of the "gpc.poly" (no formal class) with a warning.

Note

Package gpclib is required for the formal class definition of a "gpc.poly".

Author(s)

Sebastian Meyer

https://CRAN.R-project.org/package=sf
https://CRAN.R-project.org/package=gpclib

xylist 19

See Also

xylist

Examples

use example polygons from
example(plotpolyf, ask = FALSE)
letterR # a simple "xylist"

letterR.sfg <- sf::st_polygon(lapply(letterR, function(xy)
rbind(cbind(xyx, xyy), c(xy$x[1], xy$y[1]))))

letterR.sfg
stopifnot(identical(letterR, xylist(letterR.sfg)))

convert sf "POLYGON" to a "gpc.poly"
letterR.gpc_from_sfg <- sfg2gpc(letterR.sfg)
letterR.gpc_from_sfg

xylist Convert Various Polygon Classes to a Simple List of Vertices

Description

Different packages concerned with spatial data use different polygon specifications, which some-
times becomes very confusing (see Details below). To be compatible with the various polygon
classes, package polyCub uses an S3 class "xylist", which represents a polygonal domain (of
potentially multiple polygons) by its core feature only: a list of lists of vertex coordinates (see the
"Value" section below). The generic function xylist can deal with the following polygon classes:

• "owin" from package spatstat.geom
• "gpc.poly" from package gpclib
• "Polygons" from package sp (as well as "Polygon" and "SpatialPolygons")

• "(MULTI)POLYGON" from package sf

The (somehow useless) default xylist-method does not perform any transformation but only en-
sures that the polygons are not closed (first vertex not repeated).

Usage

xylist(object, ...)

S3 method for class 'owin'
xylist(object, ...)

S3 method for class 'sfg'

20 xylist

xylist(object, ...)

S3 method for class 'gpc.poly'
xylist(object, ...)

S3 method for class 'SpatialPolygons'
xylist(object, reverse = TRUE, ...)

S3 method for class 'Polygons'
xylist(object, reverse = TRUE, ...)

S3 method for class 'Polygon'
xylist(object, reverse = TRUE, ...)

Default S3 method:
xylist(object, ...)

Arguments

object an object of one of the supported spatial classes.

... (unused) argument of the generic.

reverse logical (TRUE) indicating if the vertex order of the sp classes should be reversed
to get the xylist/owin convention.

Details

Polygon specifications differ with respect to:

• is the first vertex repeated?

• which ring direction represents holes?

Package overview:

spatstat.geom: "owin" does not repeat the first vertex, and anticlockwise = normal boundary,
clockwise = hole. This convention is also used for the return value of xylist.

sp: Repeat first vertex at the end (closed), anticlockwise = hole, clockwise = normal boundary

sf: Repeat first vertex at the end (closed), clockwise = hole, anticlockwise = normal boundary;
however, sf does not check the ring direction by default, so it cannot be relied upon.

gpclib: There seem to be no such conventions for polygons of class "gpc.poly".

Thus, for polygons from sf and gpclib, xylist needs to check the ring direction, which makes these
two formats the least efficient for integration domains in polyCub.

Value

Applying xylist to a polygon object, one gets a simple list, where each component (polygon) is
a list of "x" and "y" coordinates. These represent vertex coordinates following spatstat.geom’s
"owin" convention (anticlockwise order for exterior boundaries, without repeating any vertex).

xylist 21

Author(s)

Sebastian Meyer

Index

∗ hplot
plotpolyf, 7

∗ math
circleCub.Gauss, 4
polyCub, 9
polyCub.exact.Gauss, 10
polyCub.iso, 11
polyCub.midpoint, 14
polyCub.SV, 15

∗ methods
coerce-gpc-methods, 5
coerce-sp-methods, 6
sfg2gpc, 18
xylist, 19

∗ polyCub-methods
polyCub, 9
polyCub.exact.Gauss, 10
polyCub.iso, 11
polyCub.midpoint, 14
polyCub.SV, 15

∗ spatial
circleCub.Gauss, 4
coerce-gpc-methods, 5
coerce-sp-methods, 6
polyCub, 9
polyCub.exact.Gauss, 10
polyCub.iso, 11
polyCub.midpoint, 14
polyCub.SV, 15
sfg2gpc, 18
xylist, 19

(MULTI)POLYGON, 7, 9, 12, 14, 16, 18, 19
.polyCub.iso (polyCub.iso), 11

all.equal.numeric, 4
as.im.function, 2, 14
as.mask, 14
as.owin, 14
as.owin.gpc.poly, 14
as.owin.gpc.poly (coerce-gpc-methods), 5

as.owin.Polygon (coerce-sp-methods), 6
as.owin.Polygons (coerce-sp-methods), 6
as.owin.SpatialPolygons, 14
as.owin.SpatialPolygons

(coerce-sp-methods), 6

checkintrfr, 3
circleCub.Gauss, 4, 11
coerce,Polygon,owin-method

(coerce-sp-methods), 6
coerce,Polygon,Polygons-method

(coerce-sp-methods), 6
coerce,Polygons,owin-method

(coerce-sp-methods), 6
coerce,SpatialPolygons,owin-method

(coerce-sp-methods), 6
coerce-gpc-methods, 5
coerce-sp-methods, 6

gauss.quad, 16
gpc2owin (coerce-gpc-methods), 5

image, 7
integrate, 2, 3, 11–13

lattice::levelplot, 7
levelplot, 8

owin, 5–7, 9, 12, 14, 16, 19
owin2gpc, 10
owin2gpc (coerce-gpc-methods), 5

pchisq, 4
plot_polyregion, 8
plotpolyf, 7, 12
pmvnorm, 10, 11
pnorm, 11
polyCub, 9, 11, 13, 15, 17
polyCub-package, 2
polyCub.exact.Gauss, 2, 10, 10, 13, 15, 17,

18

22

INDEX 23

polyCub.iso, 2, 3, 10, 11, 11, 15, 17
polyCub.midpoint, 2, 6, 10, 11, 13, 14, 17
polyCub.SV, 2, 9–13, 15, 15
Polygon, 6, 7, 9, 12, 16, 19
Polygons, 6, 7, 9, 12, 16, 19
print.trellis, 8

seq, 12
sfg2gpc, 10, 18
SpatialPolygons, 6, 7, 9, 12, 14, 16, 19

xylist, 6, 7, 9, 12, 16, 19, 19

	polyCub-package
	checkintrfr
	circleCub.Gauss
	coerce-gpc-methods
	coerce-sp-methods
	plotpolyf
	plot_polyregion
	polyCub
	polyCub.exact.Gauss
	polyCub.iso
	polyCub.midpoint
	polyCub.SV
	sfg2gpc
	xylist
	Index

